Search results
Results from the WOW.Com Content Network
In 2015, Fama and French extended the model, adding a further two factors — profitability and investment. Defined analogously to the HML factor, the profitability factor (RMW) is the difference between the returns of firms with robust (high) and weak (low) operating profitability; and the investment factor (CMA) is the difference between the returns of firms that invest conservatively and ...
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution.It models a broad range of random variables, largely in the nature of a time to failure or time between events.
The function T(h, a) gives the probability of the event (X > h and 0 < Y < aX) where X and Y are independent standard normal random variables.. This function can be used to calculate bivariate normal distribution probabilities [2] [3] and, from there, in the calculation of multivariate normal distribution probabilities. [4]
The formula for change (or "the change formula") provides a model to assess the relative strengths affecting the likely success of organisational change programs. The formula was created by David Gleicher while he was working at management consultants Arthur D. Little in the early 1960s, [1] refined by Kathie Dannemiller in the 1980s, [2] and further developed by Steve Cady.
Interaction effect of education and ideology on concern about sea level rise. In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive).
Each factor, or independent variable, is placed at one of three equally spaced values, usually coded as −1, 0, +1. (At least three levels are needed for the following goal.) The design should be sufficient to fit a quadratic model , that is, one containing squared terms, products of two factors, linear terms and an intercept.
Within statistical factor analysis, the factor regression model, [1] or hybrid factor model, [2] is a special multivariate model with the following form: = + + + where, is the -th (known) observation.
Then, calculate the VIF factor for ^ with the following formula : = where R 2 i is the coefficient of determination of the regression equation in step one, with on the left hand side, and all other predictor variables (all the other X variables) on the right hand side.