enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refraction (sound) - Wikipedia

    en.wikipedia.org/wiki/Refraction_(sound)

    Refraction, in acoustics, comparable to the refraction of electromagnetic radiation, is the bending of sound propagation trajectories (rays) in inhomogeneous elastic media (gases, liquids, and solids) in which the wave velocity is a function of spatial coordinates. Bending of acoustic rays in layered inhomogeneous media occurs towards a layer ...

  3. Bioacoustics - Wikipedia

    en.wikipedia.org/wiki/Bioacoustics

    Bioacoustics is a cross-disciplinary science that combines biology and acoustics. Usually it refers to the investigation of sound production, dispersion and reception in animals (including humans). [1] This involves neurophysiological and anatomical basis of sound production and detection, and relation of acoustic signals to the medium they ...

  4. Refraction - Wikipedia

    en.wikipedia.org/wiki/Refraction

    In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. [ 1 ] Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction.

  5. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.

  6. Acoustical engineering - Wikipedia

    en.wikipedia.org/wiki/Acoustical_engineering

    Refraction is the bending of sound waves caused by changes in the medium through which the wave is passing. For example, temperature gradients can cause sound wave refraction. [ 27 ] Acoustical engineers apply these fundamental concepts, along with mathematical analysis, to control sound for a variety of applications.

  7. Sound speed gradient - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_gradient

    A sound speed gradient leads to refraction of sound wavefronts in the direction of lower sound speed, causing the sound rays to follow a curved path. The radius of curvature of the sound path is inversely proportional to the gradient. [2] When the sun warms the Earth's surface, there is a negative temperature gradient in atmosphere.

  8. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    A distinct use of the term sound from its use in physics is that in physiology and psychology, where the term refers to the subject of perception by the brain. The field of psychoacoustics is dedicated to such studies. Webster's dictionary defined sound as: "1. The sensation of hearing, that which is heard; specif.: a. Psychophysics.

  9. Geometrical acoustics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_acoustics

    The same laws of reflection and refraction hold for sound rays as for light rays. Geometrical acoustics does not take into account such important wave effects as diffraction . However, it provides a very good approximation when the wavelength is very small compared to the characteristic dimensions of inhomogeneous inclusions through which the ...