enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.

  3. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    Although all of the preceding text is written in terms of divisibility by the generator polynomial, any fixed remainder () may be used and will perform just as well as a zero remainder. Most commonly, the all-ones polynomial ( x n + 1 ) / ( x + 1 ) {\displaystyle (x^{n}+1)/(x+1)} is used, but, for example, the asynchronous transfer mode header ...

  4. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).

  5. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  6. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    Tonelli–Shanks cannot be used for composite moduli: finding square roots modulo composite numbers is a computational problem equivalent to integer factorization. [1] An equivalent, but slightly more redundant version of this algorithm was developed by Alberto Tonelli [2] [3] in 1891.

  7. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a primitive root modulo 2 p k. [14] Finding primitive roots modulo p is also equivalent to finding the roots of the (p − 1)st cyclotomic polynomial modulo p.

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445. Note that b is only one digit in length and that e is only two digits in length, but the value b e is 8 digits in length. In strong cryptography, b is often at least 1024 bits. [1]

  9. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    The algorithm takes as its inputs n, the integer to be factored; and ⁠ ⁠, a polynomial in x computed modulo n.In the original algorithm, () = (), but nowadays it is more common to use () = (+).