Search results
Results from the WOW.Com Content Network
The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...
The initial, no-slip condition on the wall is (,) = , (,) =, and the second boundary condition is due to the fact that the motion at = is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
This page needs a simple and yet complex explanation of no slip condition, as it is only those who know a thing or two about fuild flow will understand this page, and i don't mean know a thing or two as in the water flows down the pipe. —Preceding unsigned comment added by 208.79.15.101 21:00, 20 May 2008 (UTC)
In fluid dynamics, the Cunningham correction factor, or Cunningham slip correction factor (denoted C), is used to account for non-continuum effects when calculating the drag on small particles. The derivation of Stokes' law , which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at ...
In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Taylor's paper became a cornerstone in the development of hydrodynamic stability theory and demonstrated that the no-slip condition, which was in dispute by the scientific community at the time, was the correct boundary condition for viscous flows at a solid boundary.