Search results
Results from the WOW.Com Content Network
IR is insulin resistance and %β is the β-cell function (more precisely, an index for glucose tolerance, i.e. a measure for the ability to counteract the glucose load). Insulin is given in μU/mL. [7] Glucose and insulin are both during fasting. [2] This model correlated well with estimates using the euglycemic clamp method (r = 0.88). [2]
The CSF/serum glucose ratio, also known as CSF/blood glucose ratio, is a measurement used to compare CSF glucose and blood sugar. Because many bacteria metabolize glucose, and because the blood–brain barrier minimizes transversal, the ratio can be useful in determining whether there is a bacterial infection in the CSF. The normal ratio is 0.6 ...
Glucose circulates in the blood of animals as blood sugar. [6] [8] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [8] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...
Glycemic load accounts for how much carbohydrate is in the food and how much each gram of carbohydrate in the food raises blood glucose levels. Glycemic load is based on the glycemic index (GI), and is calculated by multiplying the weight of available carbohydrate in the food (in grams) by the food's glycemic index, and then dividing by 100.
In chemistry, a Haworth projection is a common way of writing a structural formula to represent the cyclic structure of monosaccharides with a simple three-dimensional perspective. A Haworth projection approximates the shapes of the actual molecules better for furanoses —which are in reality nearly planar—than for pyranoses that exist in ...
Apples. The original source of sweetness for many of the early settlers in the United States, the sugar from an apple comes with a healthy dose of fiber.
Glucose (dextrose) has a molecular mass of 180, while water has a molecular mass of 18. For each 2 glucose monomers binding, a water molecule is removed. Therefore, the molecular mass of a glucose polymer can be calculated by using the formula (180*n - 18*(n-1)) with n the DP (degree of polymerisation) of the glucose polymer.
Calculated osmolarity = 2 Na + Glucose + Urea (all in mmol/L) As Na+ is the major extracellular cation, the sum of osmolarity of all other anions can be assumed to be equal to natremia, hence [Na+]x2 ≈ [Na+] + [anions] To calculate plasma osmolality use the following equation (typical in the US): = 2[Na +