enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum eraser experiment - Wikipedia

    en.wikipedia.org/wiki/Quantum_eraser_experiment

    This experiment involves an apparatus with two main sections. After two entangled photons are created, each is directed into its own section of the apparatus. Anything done to learn the path of the entangled partner of the photon being examined in the double-slit part of the apparatus will influence the second photon, and vice versa.

  3. Quantum entanglement - Wikipedia

    en.wikipedia.org/wiki/Quantum_entanglement

    Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance.

  4. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    in 2022, Alain Aspect, John Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science". [2] in 2012, Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring & manipulation of individual quantum ...

  5. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    Photons seem well-suited to be elements of an extremely fast quantum computer, and the quantum entanglement of photons is a focus of research. Nonlinear optical processes are another active research area, with topics such as two-photon absorption, self-phase modulation, modulational instability and optical parametric oscillators.

  6. Quantum decoherence - Wikipedia

    en.wikipedia.org/wiki/Quantum_decoherence

    In classical scattering of a target body by environmental photons, the motion of the target body will not be changed by the scattered photons on the average. In quantum scattering, the interaction between the scattered photons and the superposed target body will cause them to be entangled, thereby delocalizing the phase coherence from the target body to the whole system, rendering the ...

  7. Entanglement swapping - Wikipedia

    en.wikipedia.org/wiki/Entanglement_swapping

    Entanglement swapping has two pairs of entangled particles: (A, B) and (C, D). Pair of particles (A, B) is initially entangled, as is the pair (C, D). The pair (B, C) taken from the original pairs, is projected onto one of the four possible Bell states, a process called a Bell state measurement. The unmeasured pair of particles (A, D) can ...

  8. Delayed-choice quantum eraser - Wikipedia

    en.wikipedia.org/wiki/Delayed-choice_quantum_eraser

    The total pattern of all signal photons at D 0, whose entangled idlers went to multiple different detectors, will never show interference regardless of what happens to the idler photons. [20] One can get an idea of how this works by looking at the graphs of R 01 , R 02 , R 03 , and R 04 , and observing that the peaks of R 01 line up with the ...

  9. Einstein–Podolsky–Rosen paradox - Wikipedia

    en.wikipedia.org/wiki/Einstein–Podolsky–Rosen...

    The thought experiment involves a pair of particles prepared in what would later become known as an entangled state. Einstein, Podolsky, and Rosen pointed out that, in this state, if the position of the first particle were measured, the result of measuring the position of the second particle could be predicted.