enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  3. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    Next, notice that only 10 of the original 14 equations are independent, because the continuity equation ; = is a consequence of Einstein's equations. This reflects the fact that the system is gauge invariant (in general, absent some symmetry, any choice of a curvilinear coordinate net on the same system would correspond to a numerically ...

  4. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.

  5. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    In the context of general relativity, it means the problem of finding solutions to Einstein's field equations — a system of hyperbolic partial differential equations — given some initial data on a hypersurface. Studying the Cauchy problem allows one to formulate the concept of causality in general relativity, as well as 'parametrising ...

  6. Oppenheimer–Snyder model - Wikipedia

    en.wikipedia.org/wiki/Oppenheimer–Snyder_model

    Albert Einstein, who had developed his theory of general relativity in 1915, initially denied the possibility of black holes, [4] even though they were a genuine implication of the Schwarzschild metric, obtained by Karl Schwarzschild in 1916, the first known non-trivial exact solution to Einstein's field equations. [1] In 1939, Einstein ...

  7. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows. Birkhoff's theorem has the consequence that any pulsating star that remains spherically symmetric does not generate gravitational waves , as the ...

  8. Einstein–Rosen metric - Wikipedia

    en.wikipedia.org/wiki/Einstein–Rosen_metric

    In general relativity, the Einstein–Rosen metric is an exact solution to the Einstein field equations derived in 1937 by Albert Einstein and Nathan Rosen. [1] It is the first exact solution to describe the propagation of a gravitational wave .

  9. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...