enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.

  3. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  4. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    Next, notice that only 10 of the original 14 equations are independent, because the continuity equation ; = is a consequence of Einstein's equations. This reflects the fact that the system is gauge invariant (in general, absent some symmetry, any choice of a curvilinear coordinate net on the same system would correspond to a numerically ...

  5. Introduction to the mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_the...

    The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor ...

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  7. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    In the context of general relativity, it means the problem of finding solutions to Einstein's field equations — a system of hyperbolic partial differential equations — given some initial data on a hypersurface. Studying the Cauchy problem allows one to formulate the concept of causality in general relativity, as well as 'parametrising ...

  8. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    Albert Einstein believed that the geodesic equation of motion can be derived from the field equations for empty space, i.e. from the fact that the Ricci curvature vanishes. He wrote: [ 5 ] It has been shown that this law of motion — generalized to the case of arbitrarily large gravitating masses — can be derived from the field equations of ...

  9. Einstein tensor - Wikipedia

    en.wikipedia.org/wiki/Einstein_tensor

    The Einstein tensor allows the Einstein field equations to be written in the concise form: + =, where is the cosmological constant and is the Einstein gravitational constant. From the explicit form of the Einstein tensor , the Einstein tensor is a nonlinear function of the metric tensor, but is linear in the second partial derivatives of the ...