Search results
Results from the WOW.Com Content Network
The first caesium clock was built by Louis Essen in 1955 at the National Physical Laboratory in the UK [1] and promoted worldwide by Gernot M. R. Winkler of the United States Naval Observatory. Caesium atomic clocks are one of the most accurate time and frequency standards, and serve as the primary standard for the definition of the second in ...
[a] The goal is to redefine the second when clocks become so accurate that they will not lose or gain more than a second in the age of the universe. [b] To do so, scientists must demonstrate the accuracy of clocks that use strontium and ytterbium and optical lattice technology. Such clocks are also called optical clocks where the energy level ...
The evaluated accuracy u B reports of various primary frequency and time standards are published online by the International Bureau of Weights and Measures (BIPM). In May 2013 the NIST-F1 cesium fountain clock reported a u B of 3.1 × 10 −16. However, that BIPM report and the other recent reports are based on an evaluation that dates to 2005. [4]
NIST physicists Steve Jefferts (foreground) and Tom Heavner with the NIST-F2 cesium fountain atomic clock, a civilian time standard for the United States. NIST-F2 is a caesium fountain atomic clock that, along with NIST-F1, serves as the United States' primary time and frequency standard. [1] NIST-F2 was brought online on 3 April 2014. [1] [2]
Accuracy Location Image CS1 [1 ... 18 cesium atomic clocks and 4 hydrogen maser clocks Cs, H ... SOC: Space Optical Clock breadboard (Sr lattice clock) [29] Sr lattice
The majority of the clocks involved are caesium clocks; the International System of Units (SI) definition of the second is based on caesium. [6] The clocks are compared using GPS signals and two-way satellite time and frequency transfer. [7] Due to the signal averaging TAI is an order of magnitude more stable than its best constituent clock.
Caesium (IUPAC spelling; [9] also spelled cesium in American English) is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C (83.3 °F; 301.6 K), which makes it one of only five elemental metals that are liquid at or near room temperature .
The exact modern SI definition is "[The second] is defined by taking the fixed numerical value of the cesium frequency, Δν Cs, the unperturbed ground-state hyperfine transition frequency of the cesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s −1." [1]