Search results
Results from the WOW.Com Content Network
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler.
Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering, robotics, and biomechanics, [7] kinematics is used to describe the motion of systems composed of joined parts (multi-link systems) such as an engine, a robotic arm or the human skeleton.
For continuous bodies these laws are called Euler's laws of motion. [ 7 ] The total body force applied to a continuous body with mass m , mass density ρ , and volume V , is the volume integral integrated over the volume of the body:
The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the system itself, as a function of time. The formulation and solution of rigid body dynamics is an important tool in the computer simulation of mechanical systems.
Absolute rotation; Centrifugal force (rotating reference frame) Centrifugal force as seen from systems rotating about a fixed axis; Coriolis force The effect of the Coriolis force on the Earth and other rotating systems; Inertial frame of reference; Non-inertial frame; Fictitious force A more general treatment of the subject of this article
Under translational motion, the change in the position of a rigid body is specified completely by three coordinates such as x, y, and z giving the displacement of some one point, such as the center of mass, fixed to the rigid body. Purely rotational motion occurs if every particle in the body moves in a circle about a single line. This line is ...
In physics, rotational–vibrational coupling [1] occurs when the rotation frequency of a system is close to or identical to a natural frequency of internal vibration. The animation on the right shows ideal motion, with the force exerted by the spring and the distance from the center of rotation increasing together linearly with no friction .