Search results
Results from the WOW.Com Content Network
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
In other words, a fraction a / b is irreducible if and only if a and b are coprime, that is, if a and b have a greatest common divisor of 1. In higher mathematics, "irreducible fraction" may also refer to rational fractions such that the numerator and the denominator are coprime polynomials. [2]
A common, vulgar, [n 1] or simple fraction (examples: 1 / 2 and 17 / 3 ) consists of an integer numerator, displayed above a line (or before a slash like 1 ⁄ 2), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and ...
In linear algebra, reduction refers to applying simple rules to a series of equations or matrices to change them into a simpler form. In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator , by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation ).
If the square root of D is rational, then it can be written as the irreducible fraction p/q, so that q is the smallest possible denominator, and hence the smallest number for which q √ D is also an integer. Then: (√ D − n)q √ D = qD − nq √ D. which is thus also an integer. But 0 < (√ D − n) < 1 so (√ D − n)q < q.