enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Longest common substring - Wikipedia

    en.wikipedia.org/wiki/Longest_common_substring

    The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z.

  3. Longest palindromic substring - Wikipedia

    en.wikipedia.org/wiki/Longest_palindromic_substring

    For example, the longest palindromic substring of "bananas" is "anana". The longest palindromic substring is not guaranteed to be unique; for example, in the string "abracadabra", there is no palindromic substring with length greater than three, but there are two palindromic substrings with length three, namely, "aca" and "ada".

  4. Substring - Wikipedia

    en.wikipedia.org/wiki/Substring

    A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:

  5. Suffix tree - Wikipedia

    en.wikipedia.org/wiki/Suffix_tree

    The total length of all the strings on all of the edges in the tree is (), but each edge can be stored as the position and length of a substring of S, giving a total space usage of () computer words. The worst-case space usage of a suffix tree is seen with a fibonacci word , giving the full 2 n {\displaystyle 2n} nodes.

  6. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    It is at least the absolute value of the difference of the sizes of the two strings. It is at most the length of the longer string. It is zero if and only if the strings are equal. If the strings have the same size, the Hamming distance is an upper bound on the Levenshtein distance. The Hamming distance is the number of positions at which the ...

  7. Hunt–Szymanski algorithm - Wikipedia

    en.wikipedia.org/wiki/Hunt–Szymanski_algorithm

    Black dots represent candidates that would have to be considered by the simple algorithm and the black lines are connections that create common subsequences of length 3. Red dots represent k-candidates that are considered by the Hunt–Szymanski algorithm and the red line is the connection that creates a common subsequence of length 3.

  8. Knuth–Morris–Pratt algorithm - Wikipedia

    en.wikipedia.org/wiki/Knuth–Morris–Pratt...

    In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.

  9. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    In computational linguistics and computer science, edit distance is a string metric, i.e. a way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other. Edit distances find applications in natural language processing ...