Search results
Results from the WOW.Com Content Network
String functions common to many languages are listed below, including the different names used. The below list of common functions aims to help programmers find the equivalent function in a language. Note, string concatenation and regular expressions are handled in separate pages.
In computer science, a substring index is a data structure which gives substring search in a text or text collection in sublinear time. Once constructed from a document or set of documents, a substring index can be used to locate all occurrences of a pattern in time linear or near-linear in the pattern size, with no dependence or only logarithmic dependence on the document size.
It appears that Raita is not aware of the old last-character precheck (he believed that the backward-only same routine is the Horspool implementation), so readers are advised to take the results with a grain of salt. [2] On modern machines, library functions like memcmp tends to provide better throughput than any of the hand-written comparison ...
A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S. A suffix of S is a substring S[i..l] for some i in range [1, l], where l is the length of S. An alignment of P to T is an index k in T such that the last character of P is aligned with index k of T.
In computer science, an FM-index is a compressed full-text substring index based on the Burrows–Wheeler transform, with some similarities to the suffix array.It was created by Paolo Ferragina and Giovanni Manzini, [1] who describe it as an opportunistic data structure as it allows compression of the input text while still permitting fast substring queries.
Finding the longest repeated substring; Finding the longest common substring; Finding the longest palindrome in a string; Suffix trees are often used in bioinformatics applications, searching for patterns in DNA or protein sequences (which can be viewed as long strings of characters). The ability to search efficiently with mismatches might be ...
The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z. The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[(i-z+1)..i].
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.