Ad
related to: intrinsic semiconductor
Search results
Results from the WOW.Com Content Network
An intrinsic semiconductor, also called a pure semiconductor, undoped semiconductor or i-type semiconductor, is a semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.
The wide intrinsic region makes the PIN diode an inferior rectifier (one typical function of a diode), but it makes it suitable for attenuators, fast switches, photodetectors, and high-voltage power electronics applications. The PIN photodiode was invented by Jun-Ichi Nishizawa and his colleagues in 1950. It is a semiconductor device.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping. Using band theory, the electron density, is number of electrons per unit volume in the conduction band. For holes, is the number of holes per unit volume in the valence band.
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as Boron and Antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
The following image shows change in excess carriers being generated (green:electrons and purple:holes) with increasing light intensity (generation rate /cm 3) at the center of an intrinsic semiconductor bar. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes.
For premium support please call: 800-290-4726 more ways to reach us
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
In an intrinsic semiconductor, which does not contain any impurity, the concentrations of both types of carriers are ideally equal. If an intrinsic semiconductor is doped with a donor impurity then the majority carriers are electrons. If the semiconductor is doped with an acceptor impurity then the majority carriers are holes. [16]
Ad
related to: intrinsic semiconductor