Search results
Results from the WOW.Com Content Network
An intrinsic semiconductor, also called a pure semiconductor, undoped semiconductor or i-type semiconductor, is a semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.
Silicon based intrinsic semiconductor becomes extrinsic when impurities such as Boron and Antimony are introduced. The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping.
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials: = = The following table lists a few values of the intrinsic carrier concentration for intrinsic semiconductors, in order of increasing band gap.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
The wide intrinsic region makes the PIN diode an inferior rectifier (one typical function of a diode), but it makes it suitable for attenuators, fast switches, photodetectors, and high-voltage power electronics applications. The PIN photodiode was invented by Jun-Ichi Nishizawa and his colleagues in 1950. It is a semiconductor device.
The following image shows change in excess carriers being generated (green:electrons and purple:holes) with increasing light intensity (generation rate /cm 3) at the center of an intrinsic semiconductor bar. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes.
Pages in category "Semiconductor material types" The following 11 pages are in this category, out of 11 total. ... Intrinsic semiconductor; L. Linear chain compound; M.