Search results
Results from the WOW.Com Content Network
A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.
The following is an age-based Leslie matrix for this species. Each row in the first and third matrices corresponds to animals within a given age range (0–1 years, 1–2 years and 2–3 years). In a Leslie matrix the top row of the middle matrix consists of age-specific fertilities: F 1, F 2 and F 3. Note, that F 1 = S i ×R i in the matrix
The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).
The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1]
The data type is a fundamental concept in statistics and controls what sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc.
The Burt table is the symmetric matrix of all two-way cross-tabulations between the categorical variables, and has an analogy to the covariance matrix of continuous variables. Analyzing the Burt table is a more natural generalization of simple correspondence analysis , and individuals or the means of groups of individuals can be added as ...
In multivariate statistics and probability theory, the scatter matrix is a statistic that is used to make estimates of the covariance matrix, for instance of the multivariate normal distribution. Definition
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...