Search results
Results from the WOW.Com Content Network
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirō Tomonaga and Julian Schwinger appreciated that covariant perturbation ...
However, when the ionic strength is changed the measured equilibrium constant will also change, so there is a need to estimate individual (single ion) activity coefficients. Debye–Hückel theory provides a means to do this, but it is accurate only at very low concentrations. Hence the need for an extension to Debye–Hückel theory.
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
For example, if equilibrium is specified by a single chemical equation:, [24] ∑ j = 0 m ν j R j = 0 {\displaystyle \sum _{j=0}^{m}\nu _{j}R_{j}=0} where ν j is the stoichiometric coefficient for the j th molecule (negative for reactants, positive for products) and R j is the symbol for the j th molecule, a properly balanced equation will obey:
K w is the equilibrium constant for self-ionization of water, equal to 1.0 × 10 −14. Note that in solution H + exists as the hydronium ion H 3 O +, and further aquation of the hydronium ion has negligible effect on the dissociation equilibrium, except at very high acid concentration. Figure 2.
In chemistry, the common-ion effect refers to the decrease in solubility of an ionic precipitate by the addition to the solution of a soluble compound with an ion in common with the precipitate. [1] This behaviour is a consequence of Le Chatelier's principle for the equilibrium reaction of the ionic association / dissociation .
One area of application of Pitzer parameters is to describe the ionic strength variation of equilibrium constants measured as concentration quotients. Both SIT and Pitzer parameters have been used in this context, For example, both sets of parameters were calculated for some uranium complexes and were found to account equally well for the ionic ...
Generally the systems treated with the conventional chemical thermodynamics are either at equilibrium or near equilibrium. Ilya Prigogine developed the thermodynamic treatment of open systems that are far from equilibrium. In doing so he has discovered phenomena and structures of completely new and completely unexpected types.