Search results
Results from the WOW.Com Content Network
The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5] When there is a hydrogen ion gradient between two sides of the biological membrane, the concentration of some weak bases are focused on only one side of the membrane. [6]
In water, measurable pK a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A buffer solution of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid ...
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
An ICE table or RICE box or RICE chart is a tabular system of keeping track of changing concentrations in an equilibrium reaction. ICE stands for initial, change, equilibrium . It is used in chemistry to keep track of the changes in amount of substance of the reactants and also organize a set of conditions that one wants to solve with. [ 1 ]
Water is amphoteric: it has the ability to act as either an acid or a base in chemical reactions. [87] According to the Brønsted-Lowry definition, an acid is a proton (H +) donor and a base is a proton acceptor. [88] When reacting with a stronger acid, water acts as a base; when reacting with a stronger base, it acts as an acid. [88]
2,6-Di-tert-butylpyridine, a weak non-nucleophilic base [2] pK a = 3.58; Phosphazene bases, such as t-Bu-P 4 [3] Non-nucleophilic bases of high strength are usually anions. For these species, the pK a s of the conjugate acids are around 35–40. Lithium diisopropylamide (LDA), pK a = 36
The concentration of water, [H 2 O], is omitted by convention, which means that the value of K w differs from the value of K eq that would be computed using that concentration. The value of K w varies with temperature, as shown in the table below. This variation must be taken into account when making precise measurements of quantities such as pH.
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.