enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...

  3. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    All together, an iterative deepening search from depth all the way down to depth expands only about % more nodes than a single breadth-first or depth-limited search to depth , when =. [ 4 ] The higher the branching factor, the lower the overhead of repeatedly expanded states, [ 1 ] : 6 but even when the branching factor is 2, iterative ...

  4. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]

  5. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    The space complexity of A* is roughly the same as that of all other graph search algorithms, as it keeps all generated nodes in memory. [1] In practice, this turns out to be the biggest drawback of the A* search, leading to the development of memory-bounded heuristic searches, such as Iterative deepening A*, memory-bounded A*, and SMA*.

  6. Fringe search - Wikipedia

    en.wikipedia.org/wiki/Fringe_search

    In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g ( x ) is the cost of the search path from the first node to the current, and h ( x ) is the heuristic estimate of the cost from the current node to the goal, then ƒ ( x ) = g ( x ) + h ( x ) , and h * is the actual path cost to the goal.

  7. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7] Another possible implementation of iterative depth-first search uses a stack of iterators of the list of neighbors of a node, instead of a stack of ...

  8. Principal variation search - Wikipedia

    en.wikipedia.org/wiki/Principal_variation_search

    In iterative deepening search, the previous iteration has already established a candidate for such a sequence, which is also commonly called the principal variation. For any non-leaf in this principal variation, its children are reordered such that the next node from this principal variation is the first child.

  9. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  1. Related searches iterative deepening a table example in excel based on select all data found

    iterative deepening searchiteration deepening a
    iterative deepening a graphdepth first iteration
    iterative depth first search