Search results
Results from the WOW.Com Content Network
Reinflation of the alveoli following exhalation is made easier by the surfactant, which reduces surface tension in the thin fluid lining of the alveoli. The fluid coating is produced by the body in order to facilitate the transfer of gases between blood and alveolar air, and the type II cells are typically found at the blood–air barrier. [19 ...
The blood–air barrier or air–blood barrier, (alveolar–capillary barrier or membrane) exists in the gas exchanging region of the lungs. It exists to prevent air bubbles from forming in the blood , and from blood entering the alveoli .
An increase in Pi causes extraalveolar blood vessels to reduce in caliber, in turn causing blood flow to decrease (extraalveolar blood vessels are those blood vessels outside alveoli). Intraalveolar blood vessels (pulmonary capillaries) are thin walled vessels adjacent to alveoli which are subject to the pressure changes described by zones 1-3.
Alveoli and their capillary networks 3D medical illustration showing different terminating ends of bronchioles. Alveoli consist of two types of alveolar cell and an alveolar macrophage. The two types of cell are known as type I and type II cells [32] (also known as pneumocytes). [3] Types I and II make up the walls and alveolar septa.
The rest of the difference is due to the continual uptake of oxygen by the pulmonary capillaries, and the continual diffusion of CO 2 out of the capillaries into the alveoli. The alveolar pO 2 is not routinely measured but is calculated from blood gas measurements by the alveolar gas equation.
The red blood cells also carry carbon dioxide (CO 2) away from the cells in the form of carbaminohemoglobin and release it into the alveoli through the alveolar capillaries. When the diaphragm relaxes, a positive pressure is generated in the thorax and air rushes out of the alveoli expelling the carbon dioxide.
This blood gas barrier is extremely thin (in humans, on average, 2.2 μm thick). It is folded into about 300 million small air sacs called alveoli [23] (each between 75 and 300 μm in diameter) branching off from the respiratory bronchioles in the lungs, thus providing an extremely large surface area (approximately 145 m 2) for gas exchange to ...
2, [1] or A–a gradient), is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia. [2] The A–a gradient helps to assess the integrity of the alveolar capillary unit.