Search results
Results from the WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
In geometry, the midpoint theorem describes a property of parallel chords in a conic. It states that the midpoints of parallel chords in a conic are located on a common line. The common line or line segment for the midpoints is called the diameter. For a circle, ellipse or hyperbola the diameter goes through its center.
In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form A x 2 + B x y + C y 2 + D x + E y + F = 0 with A , B , C not all zero. {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with ...
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other."
A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.
More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface. [4] [5]