Search results
Results from the WOW.Com Content Network
A strictly diagonally dominant matrix (or an irreducibly diagonally dominant matrix [2]) is non-singular. A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix ...
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
Recalling that an irreducible matrix is one whose associated directed graph is strongly connected, a trivial corollary of the above is that an irreducibly diagonally dominant matrix (i.e., an irreducible WDD matrix with at least one SDD row) is nonsingular. [3]
The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.
Signature matrix: A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix
In computer science, a node d of a control-flow graph dominates a node n if every path from the entry node to n must go through d. Notationally, this is written as d dom n (or sometimes d ≫ n). By definition, every node dominates itself. There are a number of related concepts: A node d strictly dominates a node n if d dominates n and d does ...
The trace of a matrix is the sum of the diagonal elements. The top-right to bottom-left diagonal is sometimes described as the minor diagonal or antidiagonal. The off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero. [4] [5]
In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula.