Search results
Results from the WOW.Com Content Network
The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately 6.6743 × 10 −11 N⋅m 2 /kg 2. [1] The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys.
The value obtained agrees approximately with the measured value of g. The difference may be attributed to several factors, mentioned above under "Variation in magnitude": The Earth is not homogeneous; The Earth is not a perfect sphere, and an average value must be used for its radius; This calculated value of g only includes true gravity. It ...
The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors. [1] [2] [3] This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. [4]
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe.Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity anomalies. This does not take into account other effects, such as buoyancy or drag.
A body's center of gravity is the point around which the resultant torque due to gravity forces vanishes. [13] Where a gravity field can be considered to be uniform, the mass-center and the center-of-gravity will be the same.
For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2. However, the unit km 3 ⋅s −2 is frequently used in the scientific literature and in spacecraft navigation.