Search results
Results from the WOW.Com Content Network
In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
The subgroups of any given group form a complete lattice under inclusion, called the lattice of subgroups. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup generated by the set-theoretic union of the subgroups, not the set-theoretic union itself.)
If additionally the lattice satisfies the ascending chain condition, then the group is cyclic. Groups whose lattice of subgroups is a complemented lattice are called complemented groups (Zacher 1953), and groups whose lattice of subgroups are modular lattices are called Iwasawa groups or modular groups (Iwasawa 1941).
The Frobenius complement H has the property that every subgroup whose order is the product of 2 primes is cyclic; this implies that its Sylow subgroups are cyclic or generalized quaternion groups. Any group such that all Sylow subgroups are cyclic is called a Z-group , and in particular must be a metacyclic group : this means it is the ...
Cycles that contain a non-prime number of elements have cyclic subgroups that are not shown in the graph. For the group Dih 4 above, we could draw a line between a 2 and e since (a 2) 2 = e, but since a 2 is part of a larger cycle, this is not an edge of the cycle graph. There can be ambiguity when two cycles share a non-identity element.
V is the symmetry group of this cross: flipping it horizontally (a) or vertically (b) or both (ab) leaves it unchanged.A quarter-turn changes it. In two dimensions, the Klein four-group is the symmetry group of a rhombus and of rectangles that are not squares, the four elements being the identity, the vertical reflection, the horizontal reflection, and a 180° rotation.
The iterated wreath products of cyclic groups of order p are very important examples of p-groups. Denote the cyclic group of order p as W(1), and the wreath product of W(n) with W(1) as W(n + 1). Then W(n) is the Sylow p-subgroup of the symmetric group Sym(p n). Maximal p-subgroups of the general linear group GL(n,Q) are direct products of ...