Search results
Results from the WOW.Com Content Network
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
The basic interface is for C, but wrappers exist for other languages, including Ada, C++, C#, Julia, .NET, OCaml, Perl, PHP, Python, R, Ruby, and Rust. Prior to 2008, Kaffe, a Java virtual machine, used GMP to support Java built-in arbitrary precision arithmetic. [7] Shortly after, GMP support was added to GNU Classpath. [8]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .
Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.
The finite field with p n elements is denoted GF(p n) and is also called the Galois field of order p n, in honor of the founder of finite field theory, Évariste Galois.GF(p), where p is a prime number, is simply the ring of integers modulo p.
The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for large integers, published by Arnold Schönhage and Volker Strassen in 1971. [1] It works by recursively applying fast Fourier transform (FFT) over the integers modulo 2 n + 1 {\displaystyle 2^{n}+1} .
Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .