Search results
Results from the WOW.Com Content Network
A concurrent system is one where a computation can advance without waiting for all other computations to complete. [1] Concurrent computing is a form of modular programming. In its paradigm an overall computation is factored into subcomputations that may be executed concurrently.
Concurrent and parallel programming languages involve multiple timelines. Such languages provide synchronization constructs whose behavior is defined by a parallel execution model. A concurrent programming language is defined as one which uses the concept of simultaneously executing processes or threads of execution as a means of structuring a ...
Because computations in a concurrent system can interact with each other while being executed, the number of possible execution paths in the system can be extremely large, and the resulting outcome can be indeterminate. Concurrent use of shared resources can be a source of indeterminacy leading to issues such as deadlocks, and resource ...
Concurrent programming languages, libraries, APIs, and parallel programming models (such as algorithmic skeletons) have been created for programming parallel computers. These can generally be divided into classes based on the assumptions they make about the underlying memory architecture—shared memory, distributed memory, or shared ...
Concurrent user licensing allows firms to purchase computer systems and software at a lower cost because the maximum number of concurrent users expected to use the system or software at any given time (those users all logged in together) is only a portion of the total system users employed at a company.
Concurrent engineering, on the other hand, allows for all stages of product development to occur essentially at the same time. As seen in the 'Sequential Engineering vs Concurrent Design and Manufacturing' figure, initial planning is the only requirement before the process can occur including planning design, implementation, testing and evaluation.
Concurrency control mechanisms firstly need to operate correctly, i.e., to maintain each transaction's integrity rules (as related to concurrency; application-specific integrity rule are out of the scope here) while transactions are running concurrently, and thus the integrity of the entire transactional system.
In a well designed and correctly implemented multitasking system, a given process can never directly access memory that belongs to another process. An exception to this rule is in the case of shared memory; for example, in the System V inter-process communication mechanism the kernel allocates memory to be mutually shared by multiple processes ...