Search results
Results from the WOW.Com Content Network
The final elimination of oxaphosphetanes 4a and 4b yield (E)-alkene 5 and (Z)-alkene 6, with the by-product being a dialkyl-phosphate. The mechanism of the Horner-Wadsworth-Emmons reaction The ratio of alkene isomers 5 and 6 is not dependent upon the stereochemical outcome of the initial carbanion addition and upon the ability of the ...
Hydroboration of 1,2-disubstituted alkenes, such as a cis or trans olefin, produces generally a mixture of the two organoboranes of comparable amounts, even if the steric properties of the substituents are very different. For such 1,2-disubstituted olefins, regioselectivity can be observed only when one of the two substituents is a phenyl ring.
monosub. alkenes 1645 medium 1,1-disub. alkenes 1655 medium cis-1,2-disub. alkenes 1660 medium trans-1,2-disub. alkenes 1675 medium trisub., tetrasub. alkenes 1670 weak conjugated C═C dienes 1600 strong 1650 strong with benzene ring 1625 strong with C═O 1600 strong C═C (both sp 2) any 1640–1680 medium aromatic C═C any 1450
1,2-disubstituted Cycloalkene undergoing syn and anti addition. Syn addition is the addition of two substituents to the same side (or face) of a double bond or triple bond, resulting in a decrease in bond order but an increase in number of substituents. [3] Generally the substrate will be an alkene or alkyne.
Hydrosilanes can reduce 1,1-disubstituted double bonds that form stable tertiary carbocations upon protonation. Trisubstituted double bonds may be reduced selectively in the presence of 1,2-disubstituted or monosubstituted alkenes. [15] Aromatic compounds may be reduced with TFA and triethylsilane.
Hydroformylation of an alkene (R 1 to R 3 organyl groups (i. e. alkyl-or aryl group) or hydrogen). In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes (R−CH=O) from alkenes (R 2 C=CR 2).
The Heck reaction is the palladium-catalyzed coupling of an aryl or alkenyl halide with an alkene to form a substituted alkene. [2] Intramolecular variants of the reaction may be used to generate cyclic products containing endo or exo double bonds.
Allylic oxidation can be predicted by the substitution pattern on the olefin. In the case of 1,2-disubstituted olefins, reaction rates follow CH > CH 2 > CH 3: Geminally-substituted olefins react in the same order of reaction rates as above: [2] Trisubstituted alkenes experience reactivity at the more substituted end of the double bond.