enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Matrix representation - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation

    Illustration of row- and column-major order. Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" , in which all the elements for a given column are stored contiguously in memory.

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    An empty matrix is a matrix in which the number of rows or columns (or both) is zero. [ 73 ] [ 74 ] Empty matrices help to deal with maps involving the zero vector space . For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while ...

  6. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The last column can be fixed to any unit vector, and each choice gives a different copy of O(n) in O(n + 1); in this way O(n + 1) is a bundle over the unit sphere S n with fiber O(n). Similarly, SO( n ) is a subgroup of SO( n + 1) ; and any special orthogonal matrix can be generated by Givens plane rotations using an analogous procedure.

  7. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1]

  8. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b; By contrast, the entrywise product is implemented as: a .* b;

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.