Search results
Results from the WOW.Com Content Network
The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
Ratio of a circle's circumference to its diameter. 1900 to 1600 BCE [2] Tau: 6.28318 53071 79586 47692 [3] [OEIS 2] Ratio of a circle's circumference to its radius. Equal to : 1900 to 1600 BCE [2] Square root of 2, Pythagoras constant [4] 1.41421 35623 73095 04880 [Mw 2] [OEIS 3]
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The magnitude of such precision (152 decimal places) can be put into context by the fact that the circumference of the largest known object, the observable universe, can be calculated from its diameter (93 billion light-years) to a precision of less than one Planck length (at 1.6162 × 10 −35 meters, the shortest unit of length expected to be ...
An ellipse has a simple algebraic solution for its area, but for its perimeter (also known as circumference), integration is required to obtain an exact solution. Analytically , the equation of a standard ellipse centered at the origin with width 2 a {\displaystyle 2a} and height 2 b {\displaystyle 2b} is: x 2 a 2 + y 2 b 2 = 1. {\displaystyle ...
Anaxagoras attempted to square the circle [9] compass and straightedge: Anaxagoras did not offer a solution: 0 400 BC to AD 400: Vyasa [10] verses: 6.12.40-45 of the Bhishma Parva of the Mahabharata offer: "... The Moon is handed down by memory to be eleven thousand yojanas in diameter. Its peripheral circle happens to be thirty three thousand ...
Eratosthenes also calculated the Sun's diameter. According to Macrobius, Eratosthenes made the diameter of the Sun to be about 27 times that of the Earth. [17] The actual figure is approximately 109 times. [26] During his time at the Library of Alexandria, Eratosthenes devised a calendar using his predictions about the ecliptic of the Earth. He ...
With the presumption of a spherical Earth, an expedition commissioned by caliph al-Ma'mun used this fact to calculate Earth's circumference to within 7,920 kilometres (4,920 mi) of the correct value of around 40,000 kilometres (25,000 mi), and possibly as accurately as 180 kilometres (110 mi). [10]