Search results
Results from the WOW.Com Content Network
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.
To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:
A balanced binary tree is a binary tree structure in which the left and right subtrees of every node differ in height (the number of edges from the top-most node to the farthest node in a subtree) by no more than 1 (or the skew is no greater than 1). [22]
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
The size of an internal node is the sum of sizes of its two children, plus one: (size[n] = size[n.left] + size[n.right] + 1). Based on the size, one defines the weight to be weight[n] = size[n] + 1. [a] Weight has the advantage that the weight of a node is simply the sum of the weights of its left and right children. Binary tree rotations.
Binary trees may also be studied with all nodes unlabeled, or with labels that are not given in sorted order. For instance, the Cartesian tree data structure uses labeled binary trees that are not necessarily binary search trees. [4] A random binary tree is a random tree drawn from a certain probability distribution on binary trees. In many ...
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.