enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flavin adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Flavin_adenine_dinucleotide

    The high-energy electrons from this oxidation are stored momentarily by reducing FAD to FADH 2. FADH 2 then reverts to FAD, sending its two high-energy electrons through the electron transport chain; the energy in FADH 2 is enough to produce 1.5 equivalents of ATP [19] by oxidative phosphorylation.

  3. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    NADH and FADH 2 undergo oxidation in the electron transport chain by transferring an electrons to regenerate NAD + and FAD. Protons are pulled into the intermembrane space by the energy of the electrons going through the electron transport chain. Four electrons are finally accepted by oxygen in the matrix to complete the electron transport chain.

  4. Beta oxidation - Wikipedia

    en.wikipedia.org/wiki/Beta_oxidation

    This reaction is essential for the subsequent steps in beta oxidation that lead to the production of acetyl-CoA, NADH, and FADH2, which are important for generating ATP, the energy currency of the cell. Long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency is a condition that affects mitochondrial function due to enzyme impairments.

  5. Acyl-CoA - Wikipedia

    en.wikipedia.org/wiki/Acyl-CoA

    General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain. Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this ...

  6. Acyl-CoA dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Acyl-CoA_dehydrogenase

    The medium chain acyl-CoA dehydrogenase (MCAD) is the best known structure of all ACADs, and is the most commonly deficient enzyme within the class that leads to metabolic disorders in animals. [1] This protein is a homotetramer with each subunit containing roughly 400 amino acids and one equivalent of FAD per monomer.

  7. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  8. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.

  9. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    The last steps of this process occur in mitochondria. The reduced molecules NADH and FADH 2 are generated by the Krebs cycle, glycolysis, and pyruvate processing. These molecules pass electrons to an electron transport chain, which releases the energy of oxygen to create a proton gradient across the inner mitochondrial membrane.