Search results
Results from the WOW.Com Content Network
Archaea (/ ɑːr ˈ k iː ə / ⓘ ar-KEE-ə) is a domain of organisms. Traditionally, Archaea only included its prokaryotic members, but since this has been found to be paraphyletic, as eukaryotes are now known to have evolved from archaea.
The three-domain system adds a level of classification (the domains) "above" the kingdoms present in the previously used five- or six-kingdom systems.This classification system recognizes the fundamental divide between the two prokaryotic groups, insofar as Archaea appear to be more closely related to eukaryotes than they are to other prokaryotes – bacteria-like organisms with no cell nucleus.
Bergey's Manual Trust was established in 1936 to sustain the publication of Bergey's Manual of Determinative Bacteriology and supplementary reference works. The Trust also recognizes individuals who have made outstanding contributions to bacterial taxonomy by presentation of the Bergey Award and Bergey Medal, jointly supported by funds from the Trust and from Springer, the publishers of the ...
According to the domain system, the tree of life consists of either three domains, Archaea, Bacteria, and Eukarya, [1] or two domains, Archaea and Bacteria, with Eukarya included in Archaea. [3] [4] In the three-domain model, the first two are prokaryotes, single-celled microorganisms without a membrane-bound nucleus.
The tree of life. Two domains of life are Bacteria (top branches) and Archaea (bottom branches, including eukaryotes). The two-domain system is a biological classification by which all organisms in the tree of life are classified into two domains, Bacteria and Archaea.
This article lists the genera of the Archaea. The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [1] and National Center for Biotechnology Information (NCBI). [2] However, in the List provided below, GTDB has precedence unless otherwise noted.
Euryarchaeota (from Ancient Greek εὐρύς eurús, "broad, wide") is a kingdom of archaea. [3] Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines; halobacteria, which survive extreme concentrations of salt; and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C.
The Thermoproteota are prokaryotes that have been classified as a phylum of the domain Archaea. [2] [3] [4] Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment. [5]