Search results
Results from the WOW.Com Content Network
The RD-107 and RD-108 engines are produced at the JSC Kuznetsov plant in Samara, Russia, under the supervision of the Privolzhskiy branch of NPO Energomash, also known as the Volga branch. [1] [3] [5] The Privolzhsky branch was organized as a branch of OKB-456 in 1958, specifically for the manufacture of RD-107 and RD-108 engines. The branch ...
5.7 –7.00 Phenol: 181.75 3.60 43.0 –7.27 K f [2] K b [1] Water: 100.00 0.512 0.00 –1.86 K b & K f [2] Ethyl Acetate: 77.1 [5] Acetic Anhydride: 139.0 [6] Ethylene Dichloride: 1.25 83.5 −35 [7] Acetonitrile: 0.78 81.6 −45 [8] Heptane: 98.4 [9] Isobutanol: 107.7 [10] n-Hexane: 0.66 68.7 [11] n-Butanol: 117.7 [12] Hydrochloric Acid: 84.8 ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Notable examples are the RD-107/RD-108 engines used on the R-7, Molniya and Soyuz rocket families, and the RD-170, RD-171 and RD-180 engines used on the Energia, Zenit and Atlas V launch vehicles. As of July 2013 [update] , the company remained largely owned by the federal government of Russia , but RSC Energia owned approximately 14% of the ...
The reaction proceeds in the forward direction (towards larger values of Q r) when Δ r G < 0 or in the reverse direction (towards smaller values of Q r) when Δ r G > 0. Eventually, as the reaction mixture reaches chemical equilibrium, the activities of the components (and thus the reaction quotient) approach constant values.
The R-7 was 34 m (112 ft) long, 10.3 m (34 ft) in diameter and weighed 280 metric tons (280 long tons; 310 short tons); it had a single stage with four strap on boosters powered by rocket engines using liquid oxygen (LOX) and kerosene and capable of delivering its payload up to 8,000 km (5,000 mi), with an accuracy of around 5 km (3.1 mi).
Phase behavior Triple point: 247.8 K (−25.3 °C), ? Pa Critical point: 631 K (358 °C), 3700 kPa Std enthalpy change of fusion, Δ fus H o: 13.6 kJ/mol Std entropy change
The distribution constant (or partition ratio) (K D) is the equilibrium constant for the distribution of an analyte in two immiscible solvents. [1] [2] [3]In chromatography, for a particular solvent, it is equal to the ratio of its molar concentration in the stationary phase to its molar concentration in the mobile phase, also approximating the ratio of the solubility of the solvent in each phase.