Search results
Results from the WOW.Com Content Network
Methane clathrate (CH 4 ·5.75H 2 O) or (4CH 4 ·23H 2 O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
Methane clathrate block embedded in the sediment of hydrate ridge, off Oregon, USA. Clathrate hydrates, or gas hydrates, clathrates, or hydrates, are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped inside "cages" of hydrogen bonded, frozen water molecules.
A natural-gas processing plant in Aderklaa, Austria. Natural-gas processing is a range of industrial processes designed to purify raw natural gas by removing contaminants such as solids, water, carbon dioxide (CO 2), hydrogen sulfide (H 2 S), mercury and higher molecular mass hydrocarbons to produce pipeline quality dry natural gas [1] for pipeline distribution and final use. [2]
The existence and depth of a hydrate deposit is often indicated by the presence of a bottom-simulating reflector (BSR). A BSR is a seismic reflection indicating the lower limit of hydrate stability in sediments due to the different densities of hydrate saturated sediments, normal sediments and those containing free gas. [2]
Ice from a theorized superionic water may possess two crystalline structures. At pressures in excess of 50 GPa (7,300,000 psi) such superionic ice would take on a body-centered cubic structure. However, at pressures in excess of 100 GPa (15,000,000 psi) the structure may shift to a more stable face-centered cubic lattice.
Methane clathrate, also known commonly as methane hydrate, is a form of water ice that contains a large amount of methane within its crystal structure. Potentially large deposits of methane clathrate have been found under sediments on the ocean floors of the Earth, although the estimates of total resource size given by various experts differ by ...
The geometry, host-reservoir and physical and chemical properties of the modern natural gas-hydrate occurrences point to a conversion of conventional free-gas accumulations when they were cooled down to a point that was well within the hydrate stability conditions, allowing hydrates to form (see UNEP Global Outlook on Methane Gas Hydrates (2012 ...