Ad
related to: sdh frame structure with explanation chart for construction
Search results
Results from the WOW.Com Content Network
The STM-1 frame is on the basic transmission format for SDH (Synchronous Digital Hierarchy). An STM-1 frame has a byte-oriented structure with 9 rows and 270 columns of bytes, for a total of 2,430 bytes (9 rows * 270 columns = 2430 bytes). Each byte corresponds to a 64 kbit/s channel. [3] TOH: Transport Overhead (RSOH + AU4P + MSOH)
An STM-1 frame. The first nine columns contain the overhead and the pointers. For the sake of simplicity, the frame is shown as a rectangular structure of 270 columns and nine rows but the protocol does not transmit the bytes in this order. For the sake of simplicity, the frame is shown as a rectangular structure of 270 columns and nine rows.
An STM-4 frame consists of 36 rows each containing 270 bytes. This is a direct multiple of STM-1, which consists of 9 rows each containing 270 bytes. The frame frequency of 32 kHz has also been chosen as a 4x multiple of that of STM-1, so that one byte of frame corresponds to the transmission capacity of a 64 kbit/s channel.
The frame structure defined in G.709 is constructed of 4 areas: OPUk [3] is the area in which payload is mapped. ODUk [3] contains the OPUk with additional overhead bytes (e.g. TTI, BIP8, GCC1/2, TCM etc.). OTUk [3] is the section and includes framing, TTI, BIP8 and GCC0 bytes.
After traversing SDH paths, the traffic is processed in the reverse fashion: virtual concatenation path processing to recreate the original synchronous byte stream, followed by decapsulation to converting the synchronous data stream to an asynchronous stream of Ethernet frames. The SDH paths may be VC-4, VC-3, VC-12 or VC-11 paths.
The WAN PHY was designed to interoperate with OC-192/STM-64 SDH/SONET equipment using a light-weight SDH/SONET frame running at 9.953 Gbit/s. The WAN PHY operates at a slightly slower data-rate than the local area network (LAN) PHY. The WAN PHY can drive maximum link distances up to 80 km depending on the fiber standard employed.
The internal structure of an Ethernet frame is specified in IEEE 802.3. [2] The table below shows the complete Ethernet packet and the frame inside, as transmitted, for the payload size up to the MTU of 1500 octets. [b] Some implementations of Gigabit Ethernet and other higher-speed variants of Ethernet support larger frames, known as jumbo frames.
IBM Turboways ATM 155 PCI network interface card. Asynchronous Transfer Mode (ATM) is a telecommunications standard defined by the American National Standards Institute and International Telecommunication Union Telecommunication Standardization Sector (ITU-T, formerly CCITT) for digital transmission of multiple types of traffic.
Ad
related to: sdh frame structure with explanation chart for construction