Search results
Results from the WOW.Com Content Network
Examples include iron, essential to hemoglobin; and magnesium, essential to chlorophyll. Some elements are essential only to certain taxonomic groups of organisms, particularly the prokaryotes. For instance, the lanthanide series rare earths are essential for methanogens. As shown in the following table, there is strong evidence that 19 of the ...
Two or more atoms is a molecule, like a dioxide. Many small molecules may combine in a chemical reaction to make up a macromolecule, such as a phospholipid. Multiple macromolecules form a cell, like a club cell. A group of cells functioning together as a tissue, for example, Epithelial tissue. Different tissues make up an organ, like a lung.
Herbivores and carnivores are examples of organisms that obtain carbon and electrons or hydrogen from living organic matter. Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose ), fats and proteins. [ 2 ]
Graphic representation of carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur. CHNOPS and CHON are mnemonic acronyms for the most common elements in living organisms. . "CHON" stands for carbon, hydrogen, oxygen, and nitrogen, which together make up more than 95 percent of the mass of biological system
Groups of atoms that contain these elements (O-, H-, P-, and S-) and are bonded to a central carbon atom or skeleton are called functional groups. [33] There are six prominent functional groups that can be found in organisms: amino group, carboxyl group, carbonyl group, hydroxyl group, phosphate group, and sulfhydryl group. [33]
Biomolecules are an important element of living organisms. They are often endogenous, [2] i.e. produced within the organism, [3] but organisms usually also need exogenous biomolecules, for example certain nutrients, to survive. Biomolecules and their reactions are studied in biology and its subfields of biochemistry and molecular biology.
The asymmetric ends of DNA strands are said to have a directionality of five prime end (5′ ), and three prime end (3′), with the 5′ end having a terminal phosphate group and the 3′ end a terminal hydroxyl group. One major difference between DNA and RNA is the sugar, with the 2-deoxyribose in DNA being replaced by the related pentose ...
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.