Search results
Results from the WOW.Com Content Network
For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...
The simplest example of a vector space over a field F is the field F itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all n -tuples (sequences of length n ) ( a 1 , a 2 , … , a n ) {\displaystyle (a_{1},a_{2},\dots ,a_{n})} of elements a i of F form a vector space that ...
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
In science, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. [1] [2] [3] An example of a scalar field is a weather map, with the surface temperature described by assigning a number to each point on the map.
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
A subset of a vector space over an ordered field is a cone (or sometimes called a linear cone) if for each in and positive scalar in , the product is in . [2] Note that some authors define cone with the scalar ranging over all non-negative scalars (rather than all positive scalars, which does not include 0). [3]
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
A topological vector space homomorphism (abbreviated TVS homomorphism), also called a topological homomorphism, [2] [3] is a continuous linear map: between topological vector spaces (TVSs) such that the induced map : is an open mapping when := (), which is the range or image of , is given the subspace topology induced by .