Search results
Results from the WOW.Com Content Network
The weight and inertia of these small particles causes them to stimulate hair cells when the head moves. The hair cells are made up of 40 to 70 stereocilia and one kinocilium, which is connected to an afferent nerve. Hair cells send signals down sensory nerve fibers which are interpreted by the brain as motion. In addition to sensing ...
Vector graphics are commonly found today in the SVG, WMF, EPS, PDF, CDR or AI types of graphic file formats, and are intrinsically different from the more common raster graphics file formats such as JPEG, PNG, APNG, GIF, WebP, BMP and MPEG4. The World Wide Web Consortium (W3C) standard for vector graphics is Scalable Vector Graphics (SVG). The ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The utricle and saccule are part of the balancing system (membranous labyrinth) in the vestibule of the bony labyrinth (small oval chamber). [1] They use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation. The utricle detects linear accelerations and head-tilts in the horizontal plane.
In the semicircular canals, the hair cells are found in the crista ampullaris, and the stereocilia protrude into the ampullary cupula. Here, the stereocilia are all oriented in the same direction. In the otoliths, the hair cells are topped by small, calcium carbonate crystals called otoconia. Unlike the semicircular ducts, the kinocilia of hair ...
The otolithic membrane is a fibrous structure located in the vestibular system of the inner ear.It plays a critical role in the brain's interpretation of equilibrium.The membrane serves to determine if the body or the head is tilted, in addition to the linear acceleration of the body.
It is called preauricular sinus which, according to the U.S. National Institutes of Health, or NIH, "generally appears as a tiny skin-lined hole or pit, often just in front of the upper ear where ...
The vestibular-ocular reflex (VOR) is a reflex eye movement that stabilizes images on the retina during head movement by producing an eye movement in the direction opposite to head movement, thus preserving the image on the center of the visual field. For example, when the head moves to the right, the eyes move to the left, and vice versa.