Search results
Results from the WOW.Com Content Network
In physics, a mass balance, also called a material balance, is an application of conservation of mass [1] to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique.
Material balancing involves taking a survey of the available inputs and raw materials in an economy and then using a balance sheet to balance the inputs with output targets specified by industry to achieve a balance between supply and demand. This balance is used to formulate a plan for resource allocation and investment in a national economy ...
A material balance on the differential volume of a fluid element, or plug, on species i of axial length dx between x and x + dx gives: [accumulation] = [in] - [out] + [generation] - [consumption] Accumulation is 0 under steady state; therefore, the above mass balance can be re-written as follows: 1.
The concept of a continuum underlies the mathematical framework for studying large-scale forces and deformations in materials. Although materials are composed of discrete atoms and molecules, separated by empty space or microscopic cracks and crystallographic defects, physical phenomena can often be modeled by considering a substance distributed throughout some region of space.
The method of material balances was first developed in the 1930s during the Soviet Union's rapid industrialization drive. Input–output planning was never adopted because the material balance system had become entrenched in the Soviet economy, and input–output planning was shunned for ideological reasons.
These four readings are sufficient to define the size and position of a final mass to achieve good balance. Ref 4 For production balancing, the phase of dynamic vibration is observed with its amplitude. This allows one-shot dynamic balance to be achieved with a single spin, by adding a mass of internally calculated size in a calculated position.
This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems. Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions. [1]
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...