Search results
Results from the WOW.Com Content Network
In physics and mathematics, the phase (symbol φ or ϕ) of a wave or other periodic function of some real variable (such as time) is an angle-like quantity representing the fraction of the cycle covered up to .
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ), whose orthogonal components are sin(2 π ft) cos(φ) and sin(2 π ft + π /2) sin(φ), as we have seen.
In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).
In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve. Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space.
In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to functions given by integration against a rapidly-varying complex exponential. This method originates from the 19th century, and is due to George Gabriel Stokes and Lord Kelvin. [1]