Search results
Results from the WOW.Com Content Network
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
Consider a continuous-time Markov process with m + 1 states, where m ≥ 1, such that the states 1,...,m are transient states and state 0 is an absorbing state. Further, let the process have an initial probability of starting in any of the m + 1 phases given by the probability vector (α 0,α) where α 0 is a scalar and α is a 1 × m vector.
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.
If the shift in is expressed as a fraction of the period, and then scaled to an angle spanning a whole turn, one gets the phase shift, phase offset, or phase difference of relative to . If F {\displaystyle F} is a "canonical" function for a class of signals, like sin ( t ) {\displaystyle \sin(t)} is for all sinusoidal signals, then φ ...
The function is real-valued, positive-homogeneous of degree 1, and infinitely differentiable away from {=}. Also, we assume that does not have any critical points on the support of . Such a function, is usually called a phase function. In some contexts more general functions are considered and still referred to as phase functions.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency.The result is that all frequency components of the input signal are shifted in time (usually delayed) by the same constant amount (the slope of the linear function), which is referred to as the group delay.