Search results
Results from the WOW.Com Content Network
The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings without any other information about the users or films, i.e. without the users being identified except by numbers assigned for the contest.
One example is the movie-ratings matrix, as appears in the Netflix problem: Given a ratings matrix in which each entry (,) represents the rating of movie by customer , if customer has watched movie and is otherwise missing, we would like to predict the remaining entries in order to make good recommendations to customers on what to watch next.
From 2006 to 2009, Netflix sponsored a competition, offering a grand prize of $1,000,000 to the team that could take an offered dataset of over 100 million movie ratings and return recommendations that were 10% more accurate than those offered by the company's existing recommender system.
The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings. The prize would be awarded to the team achieving over 10% improvement over Netflix's own Cinematch algorithm. The team "Gravity" was the front runner during January—May 2007. [2]
While Funk MF is able to provide very good recommendation quality, its ability to use only explicit numerical ratings as user-items interactions constitutes a limitation. Modern day recommender systems should exploit all available interactions both explicit (e.g. numerical ratings) and implicit (e.g. likes, purchases, skipped, bookmarked). To ...
The cold start problem is a well known and well researched problem for recommender systems.Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items (e-commerce, films, music, books, news, images, web pages) that are likely of interest to the user.
[[Category:Netflix templates]] to the <includeonly> section at the bottom of that page. Otherwise, add <noinclude>[[Category:Netflix templates]]</noinclude> to the end of the template code, making sure it starts on the same line as the code's last character.
In practice, many commercial recommender systems are based on large datasets. As a result, the user-item matrix used for collaborative filtering could be extremely large and sparse, which brings about challenges in the performance of the recommendation. One typical problem caused by the data sparsity is the cold start problem. As collaborative ...