Search results
Results from the WOW.Com Content Network
This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.
In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781. [1] In the 1920s A.N. Tolstoi was one of the first to study the transportation problem mathematically.
The residual capacity of an arc e with respect to a pseudo-flow f is denoted c f, and it is the difference between the arc's capacity and its flow. That is, c f (e) = c(e) − f(e). From this we can construct a residual network, denoted G f (V, E f), with a capacity function c f which models the amount of available capacity on the set of arcs ...
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...
The formal definition of the quadratic assignment problem is as follows: Given two sets, P ("facilities") and L ("locations"), of equal size, together with a weight function w : P × P → R and a distance function d : L × L → R. Find the bijection f : P → L ("assignment") such that the cost function:
In the special case in which all the agents' budgets and all tasks' costs are equal to 1, this problem reduces to the assignment problem. When the costs and profits of all tasks do not vary between different agents, this problem reduces to the multiple knapsack problem. If there is a single agent, then, this problem reduces to the knapsack problem.
The minimum-cost flow problem (MCFP) is an optimization and decision problem to find the cheapest possible way of sending a certain amount of flow through a flow network.A typical application of this problem involves finding the best delivery route from a factory to a warehouse where the road network has some capacity and cost associated.
A function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem—that is, the output is not just yes or no. Notable examples include the traveling salesman problem and the integer factorization problem.