enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...

  3. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros. Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum ...

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  5. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  6. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term. For k = 0 and k = n, Descartes' rule of signs shows that the polynomial has exactly one positive real root.

  7. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    The rational function defined by the quotient of two homogeneous polynomials is a homogeneous function; its degree is the difference of the degrees of the numerator and the denominator; its cone of definition is the linear cone of the points where the value of denominator is not zero.

  8. Hilbert's Nullstellensatz - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_Nullstellensatz

    In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots. A linear fractional transformation of the variable makes it possible to use the rule of signs to count roots in any interval. This is the basic idea of Budan's theorem and the Budan–Fourier theorem. Repeated division of an ...