Search results
Results from the WOW.Com Content Network
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros. Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum ...
A strictly proper transfer function will approach zero as the frequency approaches infinity (which is true for all physical processes): = Also, the integral of the real part of a strictly proper transfer function is zero.
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Simple rational approximation (SRA) is a subset of interpolating methods using rational functions. Especially, SRA interpolates a given function with a specific rational function whose poles and zeros are simple, which means that there is no multiplicity in poles and zeros. Sometimes, it only implies simple poles.
If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term. For k = 0 and k = n, Descartes' rule of signs shows that the polynomial has exactly one positive real root.
The number of positive real roots is at most the number of sign changes in the sequence of the polynomial's coefficients (omitting zero coefficients), and the difference between the root count and the sign change count is always even. In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots.