enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...

  3. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Rashevsky–Chow theorem (control theory) Rational root theorem (algebra, polynomials) Rationality theorem ; Ratner's theorems (ergodic theory) Rauch comparison theorem (Riemannian geometry) Rédei's theorem (group theory) Reeb sphere theorem ; Reeh–Schlieder theorem (local quantum field theory) Reflection theorem (algebraic number theory)

  5. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots. A linear fractional transformation of the variable makes it possible to use the rule of signs to count roots in any interval. This is the basic idea of Budan's theorem and the Budan–Fourier theorem. Repeated division of an ...

  6. Hilbert's Nullstellensatz - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_Nullstellensatz

    In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.

  7. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  8. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point , a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index values):

  9. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    The fundamental theorem of algebra, also called d'Alembert's theorem [1] or the d'Alembert–Gauss theorem, [2] states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part ...