Search results
Results from the WOW.Com Content Network
Cell fusion is an important cellular process in which several uninucleate cells (cells with a single nucleus) combine to form a multinucleate cell, known as a syncytium.Cell fusion occurs during differentiation of myoblasts, osteoclasts and trophoblasts, during embryogenesis, and morphogenesis. [1]
These nuclei do not immediately fuse, and remain haploid in a n+n state until the very onset of meiosis: this phenomenon is called delayed karyogamy. Heterokaryosis can lead to individuals that have different nuclei in different parts of their mycelium, although in ascomycetes, particularly in " Neurospora ", nuclei have been shown to flow and ...
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
A classic example of a syncytium is the formation of skeletal muscle.Large skeletal muscle fibers form by the fusion of thousands of individual muscle cells. The multinucleated arrangement is important in pathologic states such as myopathy, where focal necrosis (death) of a portion of a skeletal muscle fiber does not result in necrosis of the adjacent sections of that same skeletal muscle ...
Muon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions.
“Fusion, on the other hand, does not create any long-lived radioactive nuclear waste.” The waste byproduct of a fusion reaction is far less radioactive than in fission, and decays far more ...
The Energy Department called it "a major scientific breakthrough decades in the making that will pave the way for advancements in national defense and the future of clean power."
Synthesis of nucleosides involves the coupling of a nucleophilic, heterocyclic base with an electrophilic sugar. The silyl-Hilbert-Johnson (or Vorbrüggen) reaction, which employs silylated heterocyclic bases and electrophilic sugar derivatives in the presence of a Lewis acid, is the most common method for forming nucleosides in this manner.