Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The velocity and altitude of the rocket after burnout can be easily modeled using the basic physics equations of motion. When comparing one rocket with another, it is impractical to directly compare the rocket's certain trait with the same trait of another because their individual attributes are often not independent of one another.
Δv is the desired change in the rocket's velocity; v e is the effective exhaust velocity (see specific impulse) m 0 is the initial mass (rocket plus contents plus propellant) m 1 is the final mass (rocket plus contents) This equation can be rewritten in the following equivalent form: = /
Rocket mass ratios versus final velocity calculated from the rocket equation. The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. [2] A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to ...
Rocket mass ratios versus final velocity calculated from the rocket equation Main article: Tsiolkovsky rocket equation The ideal rocket equation , or the Tsiolkovsky rocket equation, can be used to study the motion of vehicles that behave like a rocket (where a body accelerates itself by ejecting part of its mass, a propellant , with high speed).
In rockets, the total velocity change can be calculated (using the Tsiolkovsky rocket equation) as follows: = (+) Where: v = ship velocity. u = exhaust velocity. M = ship mass, not including the working mass. m = total mass ejected from the ship (working mass).
The principal complicating factors for SSTO from Earth are: high orbital velocity of over 7,400 metres per second (27,000 km/h; 17,000 mph); the need to overcome Earth's gravity, especially in the early stages of flight; and flight within Earth's atmosphere, which limits speed in the early stages of flight due to drag, and influences engine ...
This effective exhaust velocity represents an average or mass equivalent velocity at which propellant is being ejected from the rocket vehicle." [ 10 ] The two definitions of specific impulse are proportional to one another, and related to each other by: v e = g 0 ⋅ I sp , {\displaystyle v_{\text{e}}=g_{0}\cdot I_{\text{sp}},} where