enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flagellum - Wikipedia

    en.wikipedia.org/wiki/Flagellum

    Eukaryotic flagella are ATP-driven, while prokaryotic flagella can be ATP-driven (Archaea) or proton-driven (Bacteria). [11] The three types of flagella are bacterial, archaeal, and eukaryotic. The flagella in eukaryotes have dynein and microtubules that move with a bending mechanism. Bacteria and archaea do not have dynein or microtubules in ...

  3. Protist locomotion - Wikipedia

    en.wikipedia.org/wiki/Protist_locomotion

    The cis flagellum is closest to the eye spot, the trans flagellum is furthest. [27] Flagella of the central cells beat in an opposing breaststroke, while the peripheral flagella beat in parallel. The pinwheel organization of the peripheral flagella leads to a left-handed body rotation at a rate ω3.

  4. Rotating locomotion in living systems - Wikipedia

    en.wikipedia.org/wiki/Rotating_locomotion_in...

    Flagella are quite efficient, allowing bacteria to move at speeds of up to 60 cell lengths per second. [31] The rotary motor at the base of the flagellum is similar in structure to ATP synthase. [21] Spirillum bacteria have helical bodies with flagella at either end, and they spin about the central axis of their bodies as they move through the ...

  5. Bacterial motility - Wikipedia

    en.wikipedia.org/wiki/Bacterial_motility

    The rotary motor model used by bacteria uses the protons of an electrochemical gradient in order to move their flagella. Torque in the flagella of bacteria is created by particles that conduct protons around the base of the flagellum. The direction of rotation of the flagella in bacteria comes from the occupancy of the proton channels along the ...

  6. Axoneme - Wikipedia

    en.wikipedia.org/wiki/Axoneme

    Inside a cilium and a flagellum is a microtubule-based cytoskeleton called the axoneme. The axoneme of a primary cilium typically has a ring of nine outer microtubule doublets (called a 9+0 axoneme), and the axoneme of a motile cilium has two central microtubules in addition to the nine outer doublets (called a 9+2 axoneme).

  7. Microtubule - Wikipedia

    en.wikipedia.org/wiki/Microtubule

    Cilia and flagella always extend directly from a MTOC, in this case termed the basal body. The action of the dynein motor proteins on the various microtubule strands that run along a cilium or flagellum allows the organelle to bend and generate force for swimming, moving extracellular material, and other roles.

  8. Choanoflagellate - Wikipedia

    en.wikipedia.org/wiki/Choanoflagellate

    The flagellum of choanoflagellates is surrounded by microvilli at its base. Movement of the flagellum creates water currents that can propel free-swimming choanoflagellates through the water column and trap bacteria and detritus against the microvilli, where these foodstuffs are engulfed.

  9. Euglena - Wikipedia

    en.wikipedia.org/wiki/Euglena

    Typically, one flagellum is very short, and does not protrude from the cell, while the other is long enough to be seen with light microscopy. In some species, such as Euglena mutabilis, both flagella are "non-emergent"—entirely confined to the interior of the cell's reservoir—and consequently cannot be seen in the light microscope.