Search results
Results from the WOW.Com Content Network
A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.
If S can be taken to have just one element, G is a cyclic group of finite order, an infinite cyclic group, or possibly a group {e} with just one element. Simple group. Simple groups are those groups having only e and themselves as normal subgroups. The name is misleading because a simple group can in fact be very complex.
Also, members of older groups tended to perceive their groups to have more of the characteristics of Stage-3 and Stage-4 groups and to be more productive. Based on these results, Wheelan's position supports the traditional linear models of group development and casts doubt on the cyclic models and Gersick's punctuated equilibrium model.
Graves used a variety of names for his theory during his lifetime, ranging from the generic Levels of Human Existence in his earlier work [5] to lengthy names such as Emergent Cyclical, Phenomenological, Existential Double-Helix Levels of Existence Conception of Adult Human Behavior (1978) and Emergent Cyclical Double-Helix Model of the Adult Bio-Pyscho-Social Behaviour (1981).
The lattice of subgroups of the infinite cyclic group can be described in the same way, as the dual of the divisibility lattice of all positive integers. If the infinite cyclic group is represented as the additive group on the integers, then the subgroup generated by d is a subgroup of the subgroup generated by e if and only if e is a divisor ...
Given a cyclically ordered group K and an ordered group L, the product K × L is a cyclically ordered group. In particular, if T is the circle group and L is an ordered group, then any subgroup of T × L is a cyclically ordered group. Moreover, every cyclically ordered group can be expressed as a subgroup of such a product with T. [3]
A consequence of the theorem is that the order of any element a of a finite group (i.e. the smallest positive integer number k with a k = e, where e is the identity element of the group) divides the order of that group, since the order of a is equal to the order of the cyclic subgroup generated by a. If the group has n elements, it follows
The rank of a symmetry group is closely related to the complexity of the object (a molecule, a crystal structure) being under the action of the group. If G is a crystallographic point group, then rank(G) is up to 3. [9] If G is a wallpaper group, then rank(G) = 2 to 4. The only wallpaper-group type of rank 4 is p2mm. [10]